

Haskell containers package

For full API documentation see the containers [https://hackage.haskell.org/package/containers] Haddocks.

	Introduction
	Provided Data Structures

	Related Packages

	Looking for more resources?

	Installing and using the containers package

	Sets
	Short Example

	Importing Set and IntSet

	Common API Functions

	Serialization

	Performance

	Looking for more?

	Maps
	Short Example

	Importing Map and IntMap

	Common API Functions

	Serialization

	Performance

	Looking for more?

	Sequences
	Short Example

	Importing Sequence

	Common API Functions

	Serialization

	Performance

	Looking for more?

Introduction

The containers package provides implementations of various immutable data
structures.

Some of the data structures provided by this package have a very large API
surface (for better or worse). The docs here focus on the most common functions
which should be more than enough to get you started. Once you know the basics,
or if you’re looking for a specific function, you can head over to the
containers [https://hackage.haskell.org/package/containers] Haddocks to check out the full API documentation!

Provided Data Structures

	Sets: ordered, non-duplicated elements

	Maps: ordered maps from keys to values (aka. dictionaries)

	Sequences: finite sequence of elements, an efficient alternative to list

Note

You’ll need containers >= 0.5.9 for a few of the examples. See
Version Requirements for info on how to check which version you have and
how to upgrade.

Related Packages

	unordered-containers [https://hackage.haskell.org/package/unordered-containers] - containers using hashing instead of
ordering.

	array [https://hackage.haskell.org/package/array] - mutable and immutable arrays.

	vector [https://hackage.haskell.org/package/vector] - efficient Int-indexed arrays (boxed and unboxed).

	bytestring [https://hackage.haskell.org/package/bytestring] - compact, immutable bytestrings, useful for binary and
8-bit character data.

	dlist [https://hackage.haskell.org/package/dlist] - difference lists with O(1) append, useful for efficient
logging and pretty printing.

	hashtables [https://hackage.haskell.org/package/hashtables] - mutable hash tables in the ST monad.

Looking for more resources?

If you’ve worked your way through the documentation here and you’re looking for
more examples or tutorials you should check out:

	haskell-lang.org’s containers tutorial [https://haskell-lang.org/library/containers]

	Learn You a Haskell “Modules” chapter [http://learnyouahaskell.com/modules]

Installing and using the containers package

Version Requirements

For some of the examples you’ll need containers >= 0.5.9 which ships with
GHC >= 8.2. You can check to see which version you have installed with:

ghc --version
> The Glorious Glasgow Haskell Compilation System, version 8.2.2

If you have an older version, don’t worry about it, the majority of the code
works with older versions of the package. If you want, you can get a recent
version by from haskell.org [https://www.haskell.org/downloads], or with
Stack [https://www.haskellstack.org] using stack --resolver lts-10.2
ghci.

Importing modules

All of the modules in containers should be imported qualified since they
use names that conflict with the standard Prelude.

import qualified Data.Set as Set
import qualified Data.Map.Strict as Map
import qualified Data.Sequence as Seq

In GHCi

Start the GHCi REPL [https://en.wikipedia.org/wiki/Read%E2%80%93eval%E2%80%93print_loop] with
ghci or stack ghci. Once the REPL is loaded import the modules you want
to use and you’re good to go!

In a Cabal [https://cabal.readthedocs.io] or Stack [https://www.haskellstack.org] project

Add containers to the build-depends: stanza for your library,
executable, or test-suite:

library
 build-depends:
 base >= 4.3 && < 5,
 containers >= 0.5.7 && < 0.6

and import any modules you need in your Haskell source files.

Sets

Sets allow you to store unique, ordered elements, providing efficient
insertion, lookups, deletions, and set operations. There are two implementations
provided by the containers package: Data.Set [https://hackage.haskell.org/package/containers/docs/Data-Set.html] and
Data.IntSet [https://hackage.haskell.org/package/containers/docs/Data-IntSet.html]. Use IntSet if you are storing,
well… Int s.

data Set element = ...

data IntSet = ...

Important

Set relies on the element type having instances of the Eq and
Ord typeclass for its internal representation. These are already defined
for builtin types, and if you are using your own data type you can use the
deriving [https://en.wikibooks.org/wiki/Haskell/Classes_and_types#Deriving]
mechanism.

All of these implementations are immutable which means that any update
functions do not modify the set that you passed in, they creates a new set. In
order to keep the changes you need to assign it to a new variable. For example:

let s1 = Set.fromList ["a", "b"]
let s2 = Set.delete "a" s1
print s1
> fromList ["a","b"]
print s2
> fromList ["b"]

Short Example

The following GHCi session shows some of the basic set functionality:

import qualified Data.Set as Set

let dataStructures = Set.fromList ["Set", "Map", "Graph", "Sequence"]

-- Check if "Map" and "Trie" are in the set of data structures.
Set.member "Map" dataStructures
> True

Set.member "Trie" dataStructures
> False

-- Add "Trie" to our original set of data structures.
let moreDataStructures = Set.insert "Trie" dataStructures

Set.member "Trie" moreDataStructures
> True

-- Remove "Graph" from our original set of data structures.
let fewerDataStructures = Set.delete "Graph" dataStructures

Set.toAscList fewerDataStructures
> ["Map","Sequence","Set"]

-- Create a new set and combine it with our original set.
let unorderedDataStructures = Set.fromList ["HashSet", "HashMap"]

Set.union dataStructures unorderedDataStructures
> fromList ["Graph","HashMap","HashSet","Map","Sequence","Set"]

Tip

You can use the OverloadedLists [https://ghc.haskell.org/trac/ghc/wiki/OverloadedLists] extension so
you don’t need to write fromList [1, 2, 3] everywhere. Instead you
can just write [1, 2, 3] and if the function is expecting a set it
will be converted automatically! The code here will continue to use
fromList for clarity though.

Importing Set and IntSet

When using Set or IntSet in a Haskell source file you should always use
a qualified import because these modules export names that clash with the
standard Prelude. You can import the type constructor and addional functions
that you care about unqualified.

import Data.Set (Set, lookupMin, lookupMax)
import qualified Data.Set as Set

import Data.IntSet (IntSet)
import qualified Data.IntSet as IntSet

Common API Functions

Tip

All of these functions that work for Set will also work for IntSet,
which has the element type a specialized to Int. Anywhere that you
see Set Int you can replace it with IntSet. This will speed up
most operations tremendously (see Performance) with the exception of
size which is O(1) for Set and O(n) for IntSet.

Note

fromList [some,list,elements] is how a Set is printed.

Construction and Conversion

Create an empty set

Set.empty :: Set a
Set.empty = ...

empty [https://hackage.haskell.org/package/containers/docs/Data-Set.html#v:empty] creates a set with zero elements.

Set.empty
> fromList []

Create a set with one element (singleton)

Set.singleton :: a -> Set a
Set.singleton x = ...

singleton [https://hackage.haskell.org/package/containers/docs/Data-Set.html#v:singleton] creates a set with a single element x in
it.

Set.singleton "containers"
> fromList ["containers"]

Set.singleton 1
> fromList [1]

Create a set from a list

Set.fromList :: Ord a => [a] -> Set a
Set.fromList xs = ...

fromList [https://hackage.haskell.org/package/containers/docs/Data-Set.html#v:fromList] creates a set containing the elements of the
list xs. Since sets don’t contain duplicates, if there are repeated elements
in the list they will only appear once.

Set.fromList ["base", "containers", "QuickCheck"]
> fromList ["QuickCheck","base","containers"]

Set.fromList [1, 1, 2, 3, 4, 4, 5, 1]
> fromList [1,2,3,4,5]

Create a list from a set

Set.toAscList, Set.toList, Set.elems :: Set a -> [a]
Set.toAscList s = ...

toAscList [https://hackage.haskell.org/package/containers/docs/Data-Set.html#v:toAscList], toList [https://hackage.haskell.org/package/containers/docs/Data-Set.html#v:toList], and
elems [https://hackage.haskell.org/package/containers/docs/Data-Set.html#v:elems] return a list containing the elements of the set
:haddock_short:s in ascending order.

Note

These all do the same thing; use toAscList because its name indicates the
ordering.

Set.toDescList :: Set a -> [a]
Set.toDescList s = ...

toDescList [https://hackage.haskell.org/package/containers/docs/Data-Set.html#v:toDescList] returns a list containing the elements of
the set s in descending order.

Set.toAscList (Set.fromList [0, 2, 4, 6])
> [0,2,4,6]

Set.toDescList (Set.fromList [0, 2, 4, 6]
> [6,4,2,0]

Querying

Check if an element is in a set (member)

Set.member :: Ord a => a -> Set a -> Bool
Set.member x s = ...

member [https://hackage.haskell.org/package/containers/docs/Data-Set.html#v:member] returns True if the element x is in the
set s, False otherwise.

Set.member 0 Set.empty
> False

Set.member 0 (Set.fromList [0, 2, 4, 6])
> True

Check if a set is empty

Set.null :: Set a -> Bool
Set.null s = ...

null [https://hackage.haskell.org/package/containers/docs/Data-Set.html#v:null] returns True if the set s is empty,
False otherwise.

Set.null Set.empty
> True

Set.null (Set.fromList [0, 2, 4, 6])
> False

The number of elements in a set

Set.size :: Set a -> Int
Set.size s = ...

size [https://hackage.haskell.org/package/containers/docs/Data-Set.html#v:size] returns the number of elements in the set s.

Set.size Set.empty
> 0

Set.size (Set.fromList [0, 2, 4, 6])
> 4

Find the minimum/maximum element in a set

Since version 0.5.9

lookupMin, lookupMax :: Set a -> Maybe a
lookupMin s = ...
lookupMax s = ...

lookupMin [https://hackage.haskell.org/package/containers/docs/Data-Set.html#v:lookupMin] returns the minimum, or maximum
respectively, element of the set s, or Nothing if the set is empty.

Set.lookupMin Set.empty
> Nothing

Set.lookupMin (Set.fromList [0, 2, 4, 6])
> Just 0

Set.lookupMax (Set.fromList [0, 2, 4, 6])
> Just 6

Warning

Unless you’re using an old version of containers DO NOT use
Set.findMin or Set.findMax. They are partial and throw a runtime
error if the set is empty.

Modification

Adding a new element to a set

Set.insert :: Ord a => a -> Set a -> Set a
Set.insert x s = ...

insert [https://hackage.haskell.org/package/containers/docs/Data-Set.html#v:insert] places the element x into the set s,
replacing an existing equal element if it already exists.

Set.insert 100 Set.empty
> fromList [100]

Set.insert 0 (Set.fromList [0, 2, 4, 6])
> fromList [0,2,4,6]

Removing an element from a set

Set.delete :: Ord a => a -> Set a -> Set a
Set.delete x s = ...

delete [https://hackage.haskell.org/package/containers/docs/Data-Set.html#v:delete] the element x from the set s. If it’s
not a member it leaves the set unchanged.

Set.delete 0 (Set.fromList [0, 2, 4, 6])
> fromList [2,4,6]

Filtering elements from a set

Set.filter :: (a -> Bool) -> Set a -> Set a
Set.filter predicate s = ...

filter [https://hackage.haskell.org/package/containers/docs/Data-Set.html#v:filter] produces a set consisting of all elements of
s for which the predicate` returns True.

Set.filter (==0) (Set.fromList [0, 2, 4, 6])
> fromList [0]

Set Operations

Union

Set.union :: Ord a => Set a -> Set a -> Set a
Set.union l r = ...

union [https://hackage.haskell.org/package/containers/docs/Data-Set.html#v:union] returns a set containing all elements that are
in either of the two sets l or r (set union [https://en.wikipedia.org/wiki/Union_(set_theory)]).

Set.union Set.empty (Set.fromList [0, 2, 4, 6])
> fromList [0,2,4,6]

Set.union (Set.fromList [1, 3, 5, 7]) (Set.fromList [0, 2, 4, 6])
> fromList [0,1,2,3,4,5,6,7]

Intersection

Set.intersection :: Ord a => Set a -> Set a -> Set a
Set.intersection l r = ...

intersection [https://hackage.haskell.org/package/containers/docs/Data-Set.html#v:intersection] returns a set the elements that are in
both sets l and r (set intersection [https://en.wikipedia.org/wiki/Intersection_(set_theory)]).

Set.intersection Set.empty (Set.fromList [0, 2, 4, 6])
> fromList []

Set.intersection (Set.fromList [1, 3, 5, 7]) (Set.fromList [0, 2, 4, 6])
> fromList []

Set.intersection (Set.singleton 0) (Set.fromList [0, 2, 4, 6])
> fromList [0]

Difference

Set.difference :: Ord a => Set a -> Set a -> Set a
Set.difference l r = ...

difference [https://hackage.haskell.org/package/containers/docs/Data-Set.html#v:difference] returns a set containing the elements that
are in the first set l but not the second set r (set
difference/relative compliment [https://en.wikipedia.org/wiki/Complement_(set_theory)#Relative_complement]).

Set.difference (Set.fromList [0, 2, 4, 6]) Set.empty
> fromList [0,2,4,6]

Set.difference (Set.fromList [0, 2, 4, 6]) (Set.fromList [1, 3, 5, 7])
> fromList [0,2,4,6]

Set.difference (Set.fromList [0, 2, 4, 6]) (Set.singleton 0)
> fromList [2,4,6]

Subset

Set.isSubsetOf :: Ord a => Set a -> Set a -> Bool
Set.isSubsetOf l r = ...

isSubsetOf [https://hackage.haskell.org/package/containers/docs/Data-Set.html#v:isSubsetOf] returns True if all elements in the
first set l are also in the second set r (subset [https://en.wikipedia.org/wiki/Subset]).

Note

We use infix notation [https://wiki.haskell.org/Infix_operator#Using_infix_functions_with_prefix_notation]
so that it reads nicer. These are back-ticks (`), not single quotes (‘).

Set.empty `Set.isSubsetOf` Set.empty
> True

Set.empty `Set.isSubsetOf` (Set.fromList [0, 2, 4, 6])
> True

(Set.singleton 0) `Set.isSubsetOf` (Set.fromList [0, 2, 4, 6])
> True

(Set.singleton 1) `Set.isSubsetOf` (Set.fromList [0, 2, 4, 6])
> False

Serialization

The best way to serialize and deserialize sets is to use one of the many
libraries which already support serializing sets. binary [https://hackage.haskell.org/package/binary],
cereal [https://hackage.haskell.org/package/cereal], and store [https://hackage.haskell.org/package/store] are some common libraries that people
use.

Tip

If you are writing custom serialization code use
fromDistinctAscList [https://hackage.haskell.org/package/containers/docs/Data-Set.html#v:fromDistinctAscList] (see
#405 [https://github.com/haskell/containers/issues/405] for more info).

Performance

The API docs are annotated with the Big-O complexities of each of the set
operations. For benchmarks see the haskell-perf/sets [https://github.com/haskell-perf/sets] page.

Looking for more?

Didn’t find what you’re looking for? This tutorial only covered the most common
set functions, for a full list of functions see the
Set [https://hackage.haskell.org/package/containers/docs/Data-Set.html#t:Set] and IntSet [https://hackage.haskell.org/package/containers/docs/Data-IntSet.html#t:IntSet] API
documentation.

Maps

Maps (sometimes referred to as dictionaries in other languages) allow you to
store associations between unique keys and values. There are three
implementations provided by the containers package:
Data.Map.Strict [https://hackage.haskell.org/package/containers/docs/Data-Map-Strict.html], Data.Map.Lazy [https://hackage.haskell.org/package/containers/docs/Data-Map-Lazy.html], and
Data.IntMap [https://hackage.haskell.org/package/containers/docs/Data-IntMap.html]. You almost never want the lazy version so use
Data.Map.Strict, or if your keys are Int use Data.IntMap.

data Map k v = ...

data IntMap v = ...

Important

Map relies on the key type k having instances of the Eq and
Ord typeclass for its internal representation. These are already defined
for builtin types, and if you are using your own data type you can use the
deriving [https://en.wikibooks.org/wiki/Haskell/Classes_and_types#Deriving]
mechanism.

All of these implementations are immutable which means that any update
functions do not modify the map that you passed in, they creates a new map. In
order to keep the changes you need to assign it to a new variable. For example:

let m1 = Map.fromList [("a", 1), ("b", 2)]
let m2 = Map.delete "a" m1
print m1
> fromList [("a",1),("b",2)]
print m2
> fromList [("b",2)]

Short Example

The following GHCi session shows some of the basic map functionality:

import qualified Data.Map.Strict as Map

let nums = Map.fromList [(1,"one"), (2,"two"), (3,"three")]

-- Get the English word for the number 3 and 4.
Map.lookup 3 nums
> Just "three"

Map.lookup 4 nums
> Nothing

-- Add (4, "four") to our original map.
let moreNums = Map.insert 4 "four" nums

Map.member moreNums 4
> True

-- Remove the entry for 1 from our original map.
let fewerNums = Map.delete 1 nums

Map.toAscList fewerNums
> [(2,"two"),(3,"three")]

-- Create a new map and combine it with our original map.
-- fromList is right-biased: if a key is repeated the rightmost value is taken.
let newNums = Map.fromList [(3,"new three"), (4,"new four"), (4,"newer four")]

-- union is left-biased: if a key occurs more than once the value from the
-- left map is taken.
Map.union newNums nums
> fromList [(1,"one"),(2,"two"),(3,"new three"),(4,"newer four")]

Tip

You can use the OverloadedLists [https://ghc.haskell.org/trac/ghc/wiki/OverloadedLists] extension so
you don’t need to write fromList [1, 2, 3] everywhere; instead you
can just write [1, 2, 3] and if the function is expecting a map it
will be converted automatically! The code here will continue to use
fromList for clarity though.

Importing Map and IntMap

When using Map or IntMap in a Haskell source file you should always use
a qualified import because these modules export names that clash with the
standard Prelude (you can import the type constructor on its own though!). You
should also import Prelude and hide lookup because if you accidentally
leave off the Map. qualifier you’ll get confusing type errors. You can
always import any specific identifiers you want unqualified. Most of the time,
that will include the type constructor (Map).

import Prelude hiding (lookup)

import Data.Map.Strict (Map)
import qualified Data.Map.Strict as Map

import Data.IntMap (IntMap)
import qualified Data.IntMap.Strict as IntMap

Common API Functions

Tip

All of these functions that work for Map will also work for IntMap,
which has the key type k specialized to Int. Anywhere that you
see Map Int v you can replace it with IntMap v. This will speed up
most operations tremendously (see Performance) with the exception of
size which is O(1) for Map and O(n) for IntMap.

Note

A Map is printed as an association list preceeded by fromList. For
example, it might look like fromList [(Key1,True),(Key2,False)].

Construction and Conversion

Create an empty map

Map.empty :: Map k v
Map.empty = ...

empty [https://hackage.haskell.org/package/containers/docs/Data-Map-Strict.html#v:empty] creates a map without any entries.

Map.empty
> fromList []

Create a map with one entry (singleton)

Map.singleton :: k -> v -> Map k v
Map.singleton key value = ...

singleton [https://hackage.haskell.org/package/containers/docs/Data-Map-Strict.html#v:singleton] creates a map with a single
(key,value) entry in it.

Map.singleton 1 "one"
> fromList [(1,"one")]

Map.singleton "containers" ["base"]
> fromList [("containers",["base"])]

Create a map from a list

Map.fromList :: Ord k => [(k, v)] -> Map k v
Map.fromList xs = ...

fromList [https://hackage.haskell.org/package/containers/docs/Data-Map-Strict.html#v:fromList] creates a map containing the entries
of the list xs where the keys comes from the first entries of the pairs and
the values from the second. If the same key appears more than once then the last
value is taken.

Map.fromList []
> fromList []

Map.fromList [(1,"uno"), (1,"one"), (2,"two"), (3,"three")]
> fromList [(1,"one"),(2,"two"),(3,"three")]

There’s another incredibly useful function for constructing a map from a list:

Map.fromListWith :: Ord k => (a -> a -> a) -> [(k, a)] -> Map.Map k a
Map.fromListWith f xs = ...

fromListWith [https://hackage.haskell.org/package/containers/docs/Data-Map-Strict.html#v:fromListWith] allows you to build a map from a
list xs with repeated keys, where f is used to “combine” (or “choose”)
values with the same key.

-- Build a map from a list, but only keep the largest value for each key.
Map.fromListWith max [("a", 2), ("a", 1), ("b", 2)]
> fromList [("a",2),("b",2)]

-- Build a histogram from a list of elements.
Map.fromListWith (+) (map (\x -> (x, 1)) ["a", "a", "b", "c", "c", "c"])
> fromList [("a",2),("b",1),("c",3)]

-- Build a map from a list, combining the string values for the same key.
Map.fromListWith (++) [(1, "a"), (1, "b"), (2, "x"), (2, "y")]
> fromList [(1,"ba"),(2,"yx")]

Create a list from a map

Map.toAscList, Map.toList, Map.assocs :: Map k v -> [(k, v)]
Map.toAscList m = ...

Note

These all do the same thing; use toAscList because its name indicates
the ordering.

Note

Map.toList is not the same as Foldable.toList; the latter is
equivalent to elems, although is rarely useful for maps. In general, use
toAscList.

toAscList [https://hackage.haskell.org/package/containers/docs/Data-Map-Strict.html#v:toAscList],
toList [https://hackage.haskell.org/package/containers/docs/Data-Map-Strict.html#v:toList], and
assocs [https://hackage.haskell.org/package/containers/docs/Data-Map-Strict.html#v:assocs] returns a list containing the (key,
value) pairs in the map m in ascending key order.

Map.toDescList :: Map k v -> [(k, v)]
Map.toDescList m = ...

toDescList [https://hackage.haskell.org/package/containers/docs/Data-Map-Strict.html#v:toDescList] returns a list containing the (key,
value) pairs in the map m in descending key order.

Map.toAscList (Map.fromList [(1,"one"), (2,"two"), (3,"three")])
> [(1,"one"),(2,"two"),(3,"three")]

Map.toDescList (Map.fromList [(1,"one"), (2,"two"), (3,"three")])
> [(3,"three"),(2,"two"),(1,"one")]

Querying

Lookup an entry in the map (lookup)

Map.lookup :: Ord k => k -> Map k v -> Maybe v
Map.lookup key m = ...

Map.!? :: Ord k => Map k v -> k -> Maybe v
Map.!? m key = ...

lookup [https://hackage.haskell.org/package/containers/docs/Data-Map-Strict.html#v:lookup] the value corresponding to the given
key, returns Nothing if the key is not present; the !? operator
(since 0.5.10) is a flipped version of lookup and can often be imported
unqualified.

If you want to provide a default value if the key doesn’t exist you can do:

import Data.Maybe (fromMaybe)

-- fromMaybe :: a -> Maybe a -> a
fromMaybe defaultValue (lookup k m)

For example:

import Data.Map.Strict ((!?))
import Data.Maybe (fromMaybe)

Map.lookup 1 Map.empty
> Nothing

Map.lookup 1 (Map.fromList [(1,"one"),(2,"two"),(3,"three")])
> Just "one"

> (Map.fromList [(1,"one"),(2,"two"),(3,"three")]) !? 1
> Just "one"

fromMaybe "?" (Map.empty !? 1)
> "?"

fromMaybe "?" (Map.fromList [(1,"one"), (2,"two"), (3,"three")] !? 1)
> "one"

Warning

DO NOT Use Map.!. It is partial and throws a runtime error if the key
doesn’t exist.

Check if a map is empty

Map.null :: Map k v -> Bool
Map.null m = ...

null [https://hackage.haskell.org/package/containers/docs/Data-Map-Strict.html#v:null] returns True if the map m is
empty and False otherwise.

Map.null Map.empty
> True

Map.null (Map.fromList [(1,"one")])
> False

The number of entries in a map

Map.size :: Map k v -> Int
Map.size m = ...

size [https://hackage.haskell.org/package/containers/docs/Data-Map-Strict.html#v:size] returns the number of entries in the map
m.

Map.size Map.empty
> 0

Map.size (Map.fromList [(1,"one"), (2,"two"), (3,"three")])
> 3

Find the minimum/maximum

Since version 0.5.9

Map.lookupMin, Map.lookupMax :: Map k v -> Maybe (k, v)
Map.lookupMin m = ...
Map.lookupMax m = ...

lookupMin [https://hackage.haskell.org/package/containers/docs/Data-Map-Strict.html#v:lookupMin] and
lookupMax [https://hackage.haskell.org/package/containers/docs/Data-Map-Strict.html#v:lookupMax] respectively return the
minimum or maximum element of the map m, or Nothing if the map is empty.

Map.lookupMin Map.empty
> Nothing

Map.lookupMin (Map.fromList [(1,"one"), (2,"two"), (3,"three")])
> Just (1,"one")

Map.lookupMax (Map.fromList [(1,"one"), (2,"two"), (3,"three")])
> Just (3,"three")

Warning

DO NOT use Map.findMin or Map.findMax. They are partial and throw
a runtime error if the map is empty.

Modification

Adding a new entry to a map

Map.insert :: Ord k => k -> v -> Map k v -> Map k v
Map.insert key value m = ...

insert [https://hackage.haskell.org/package/containers/docs/Data-Map-Strict.html#v:insert] adds the value into the map m
with the given key, replacing the existing value if the key already exists.

Map.insert 1 "one" Map.empty
> Map.fromList [(1,"one")]

Map.insert 4 "four" (Map.fromList [(1,"one"), (2,"two"), (3,"three")])
> fromList [(1,"one"),(2,"two"),(3,"three"),(4,"four")]

Map.insert 1 "uno" (Map.fromList [(1,"one"), (2,"two"), (3,"three")])
> fromList [(1,"uno"),(2,"two"),(3,"three")]

Removing an entry from a map

Map.delete :: Ord k => k -> Map k v -> Map k v
Map.delete key m = ...

delete [https://hackage.haskell.org/package/containers/docs/Data-Map-Strict.html#v:delete] removes the entry with the specified
key from the map m. If the key doesn’t exist it leaves the map
unchanged.

Map.delete 1 Map.empty
> Map.empty

Map.delete 1 (Map.fromList [(1,"one"),(2,"two"),(3,"three")])
> fromList [(2,"two"),(3,"three")]

Filtering map entries

Map.filterWithKey :: (k -> v -> Bool) -> Map k v -> Map k v
Map.filterWithKey predicate m = ...

filterWithKey [https://hackage.haskell.org/package/containers/docs/Data-Map-Strict.html#v:filterWithKey] produces a map consisting of all
entries of m for which the predicate returns True.

let f key value = key == 2 || value == "one"
Map.filterWithKey f (Map.fromList [(1,"one"), (2,"two"), (3,"three")])
> fromList [(1,"one"),(2,"two"]

Modifying a map entry

Map.adjust :: Ord k => (v -> v) -> k -> Map k v -> Map k v
Map.adjust f key m = ...

abjust [https://hackage.haskell.org/package/containers/docs/Data-Map-Strict.html#v:abjust] applies the value transformation
function f to the entry with given key. If no entry for that key exists
then the map is left unchanged.

Map.alter :: Ord k => (Maybe v -> Maybe v) -> k -> Map k v -> Map k v
Map.alter f key m = ...

Apply the value transformation function f to the entry with given key,
if no entry for that key exists then the function is passed Nothing. If the
function returns Nothing then the entry is deleted, if the function returns
Just v2 then the value for the key is updated to v2. In other words,
alter can be used to insert, update, or delete a value.

import Data.Maybe (isJust)
let addValueIfMissing mv = if isJust mv then mv else (Just 1)
Map.alter addValueIfMissing "key" (Map.fromList [("key", 0)])
> fromList [("key",0)]

let addValueIfMissing mv = if isJust mv then mv else (Just 1)
Map.alter addValueIfMissing "new_key" (Map.fromList [("key", 0)])
> fromList [("key",0),("new_key",1)]

The function doubleIfPositivie below will need to be placed in a Haskell
source file.

doubleIfPositive :: Maybe Int -> Maybe Int
doubleIfPositive mv = case mv of
 -- Do nothing if the key doesn't exist.
 Nothing -> Nothing

 -- If the key does exist, double the value if it is positive.
 Just v -> if v > 0 then (Just v*2) else (Just v)

-- In GHCi
Map.alter doubleIfPositive "a" (Map.fromList [("a", 1), ("b", -1)])
> Map.fromList [("a",2), ("b",-1)]

Map.alter doubleIfPositive "b" (Map.fromList [("a", 1), ("b", -1)])
> Map.fromList [("a", 1), ("b",-1)]

Modifying all map entries (mapping and traversing)

Map.map :: (a -> b) -> Map k a -> Map k v
Map.map f m = ...

Map.mapWithKey :: (k -> a -> b) -> Map.Map k a -> Map.Map k b
Map.mapWithKey g m = ...

map [https://hackage.haskell.org/package/containers/docs/Data-Map-Strict.html#v:map] creates a new map by applying the
transformation function f to each entries value. This is how Functor [https://wiki.haskell.org/Typeclassopedia#Functor] is defined for maps.

mapWithKey [https://hackage.haskell.org/package/containers/docs/Data-Map-Strict.html#v:mapWithKey] does the same as map but gives
you access to the key in the transformation function g.

Map.map (*10) (Map.fromList [("haskell", 45), ("idris", 15)])
> fromList [("haskell",450),("idris",150)]

-- Use the Functor instance for Map.
(*10) <$> Map.fromList [("haskell", 45), ("idris", 15)]
> fromList [("haskell",450),("idris",150)]

let g key value = if key == "haskell" then (value * 1000) else value
Map.mapWithKey g (Map.fromList [("haskell", 45), ("idris", 15)])
> fromList [("haskell",45000),("idris",15)]

You can also apply a function which performs actions (such as printing) to
each entry in the map.

Map.traverseWithKey :: Applicative t => (k -> a -> t b) -> Map.Map k a -> t (Map.Map k b)
Map.traverseWithKey f m = ...

traverseWithKey [https://hackage.haskell.org/package/containers/docs/Data-Map-Strict.html#v:traverseWithKey] maps each element of the map
m to an action that produces a result of type b. The actions are
performed and the values of the map are replaced with the results from the
function. You can think of this as a map with affects.

-- | Ask the user how they want to schedule a bunch of tasks
-- that the boss has assigned certain priorities.
makeSchedule :: Map Task Priority -> IO (Map Task DateTime)
makeSchedule = traverseWithKey $ \task priority ->
 do
 putStrLn $ "The boss thinks " ++ show task ++
 " has priority " ++ show priority ++
 ". When do you want to do it?"
 readLn

Set-like Operations

Union

Map.unionWith :: Ord k => (v -> v -> v) -> Map k v -> Map k v -> Map k v
Map.unionWith f l r = ...

union [https://hackage.haskell.org/package/containers/docs/Data-Map-Strict.html#v:union] returns a map containing all entries that
are keyed in either of the two maps. If the same key appears in both maps, the
value is determined by calling f passing in the left and right value (set
union [https://en.wikipedia.org/wiki/Union_(set_theory)]).

Map.unionWith (++) Map.empty (Map.fromList [(1,"x"),(2,"y")])
> fromList [(1,"x"),(2,"y")]

let f lv rv = lv
Map.unionWith f (Map.fromList [(1, "a")]) (Map.fromList [(1,"x"),(2,"y")])
> fromList [(1,"a"),(2,"y")]

Map.unionWith (++) (Map.fromList [(1, "a")]) (Map.fromList [(1,"x"),(2,"y")])
> fromList [(1,"ax"),(2,"y")]

Intersection

Map.intersectionWith :: Ord k => (v -> v -> v) -> Map k v -> Map k v -> Map k v
Map.intersectionWith f l r = ...

intersection [https://hackage.haskell.org/package/containers/docs/Data-Map-Strict.html#v:intersection] returns a map containing all
entries that have a key in both maps l and r. The value in the returned
map is determined by calling f on the values from the left and right map
(set intersection [https://en.wikipedia.org/wiki/Intersection_(set_theory)]).

Map.intersectionWith (++) Map.empty (Map.fromList [(1,"x"), (2,"y")])
> fromList []

Map.intersectionWith (++) (Map.fromList [(1, "a")]) (Map.fromList [(1,"x"),(2,"y")])
> fromList [(1,"ax")]

Difference

Map.difference :: Ord k => Map k v -> Map k v -> Map k v
Map.difference l r = ...

difference [https://hackage.haskell.org/package/containers/docs/Data-Map-Strict.html#v:difference] returns a map containing all entries
that have a key in the l map but not the r map (set difference/relative
complement [https://en.wikipedia.org/wiki/Complement_(set_theory)#Relative_complement]).

Map.difference (Map.fromList [(1,"one"), (2,"two"), (3,"three")]) Map.empty
> fromList [(1,"uno"),(2,"two"),(3,"three")]

Map.difference (Map.fromList[(1,"one"), (2,"two")]) (Map.fromList [(1,"uno")])
> fromList [(2,"two")]

Serialization

The best way to serialize and deserialize maps is to use one of the many
libraries which already support serializing maps. binary [https://hackage.haskell.org/package/binary],
cereal [https://hackage.haskell.org/package/cereal], and store [https://hackage.haskell.org/package/store] are some common libraries that people
use.

Tip

If you are writing custom serialization code use
fromDistinctAscList [https://hackage.haskell.org/package/containers/docs/Data-Map-Strict.html#v:fromDistinctAscList] (see
#405 [https://github.com/haskell/containers/issues/405] for more info).

Performance

The API docs are annotated with the Big-O complexities of each of the map
operations. For benchmarks see the haskell-perf/dictionaries [https://github.com/haskell-perf/dictionaries] page.

Looking for more?

Didn’t find what you’re looking for? This tutorial only covered the most common
map functions, for a full list of functions see the
Map [https://hackage.haskell.org/package/containers/docs/Data-Map-Strict.html#t:Map] and
IntMap [https://hackage.haskell.org/package/containers/docs/Data-IntMap-Strict.html#t:IntMap] API documentation.

Sequences

Sequences allow you to store a finite number of sequential elements, providing
fast access to both ends of the sequence as well as efficient concatenation. The
containers package provides the Data.Sequence [https://hackage.haskell.org/package/containers/docs/Data-Sequence.html] module
which defines the Seq data type.

Short Example

The following GHCi session shows some of the basic sequence funcitonality:

-- Import the Seq type and operators for combining sequences unqualified.
-- Import the rest of the Sequence module qualified.
import Data.Sequence (Seq(..), (<|), (|>), (><))
import qualified Data.Sequence as Seq

let nums = Seq.fromList [1, 2, 3]

-- Put numbers on the front and back.
0 <| nums
> fromList [0,1,2,3]

nums |> 4
> fromList [1,2,3,4]

-- Reverse a sequence
Seq.reverse (Seq.fromList [0, 1, 2])
> fromList [2,1,0]

-- Put two sequences together.
(Seq.fromList [-2, -1]) >< nums
> fromList [-2,-1,0,1,2]

-- Check if a sequence is empty and check the length.
Seq.null nums
> False

Seq.length nums
> 3

-- Lookup an element at a certain index (since version 0.4.8).
Seq.lookup 2 nums
> Just 3

-- Or the unsafe version, you MUST check length beforehand.
Seq.index 2 nums
> 3

-- Map a function over a sequence (can use fmap or the infix function <$>).
fmap show nums
> fromList ["0","1","2"]

show <$> nums
> fromList ["0","1","2"]

-- Fold a sequence into a summary value.
foldr (+) 0 (Seq.fromList [0, 1, 2])
> 3

Tip

You can use the OverloadedLists [http://downloads.haskell.org/~ghc/latest/docs/html/users_guide/glasgow_exts.html#overloaded-lists]
extension so you don’t need to write fromList [1, 2, 3] everywhere.
Instead you can just write [1, 2, 3] and if the function is
expecting a sequence it will be converted automatically! The code here
will continue to use fromList for clarity.

Importing Sequence

When using Sequence in a Haskell source file you should always use a
qualified import becasue it exports names that clash with the standard
Prelude (you can import the type constructor and some operators on their own
though!).

import Data.Sequence (Seq, (<|), (|>), (><))
import qualified Data.Sequence as Seq

Common API Functions

Note

fromList [some,sequence,elements] is how a Seq is printed.

Construction and Conversion

Create an empty sequence

Seq.empty :: Seq a
Seq.empty = ...

empty [https://hackage.haskell.org/package/containers/docs/Data-Sequence.html#v:empty] creates a sequence with zero elements.

Seq.empty
> fromList []

Create a sequence with one element (singleton)

Seq.singleton :: a -> Seq a
Seq.singleton x = ...

singleton [https://hackage.haskell.org/package/containers/docs/Data-Sequence.html#v:singleton] creates a sequence with the single
element x in it.

Seq.singleton "containers"
> fromList ["containers"]

Seq.singleton 1
> fromList [1]

Create a sequence with the same element repeated

Seq.replicate :: Int -> a -> Seq a
Seq.replicate n x = ...

replicate [https://hackage.haskell.org/package/containers/docs/Data-Sequence.html#v:replicate] creates a sequence with same element
x repeated n times.

Seq.replicate 0 "hi"
> fromList []

Seq.replicate 3 "hi"
> fromList ["hi","hi","hi"]

Create a sequence from a list

Seq.fromList :: [a] -> Seq a
Seq.FromList xs = ...

fromList [https://hackage.haskell.org/package/containers/docs/Data-Sequence.html#v:fromList] creates a sequence containing the
elements of the list xs. Sequences allow duplicate so all elements will be
included in the order given.

Seq.fromList ["base", "containers", "QuickCheck"]
> fromList ["base","containers","QuickCheck"]

Seq.fromList [0, 1, 1, 2, 3, 1]
> fromList [0,1,1,2,3,1]

Adding to an existing sequence

(<|) :: a -> Seq a -> Seq a
x <| xs = ...

(|>) :: Seq a -> a -> Seq a
xs |> x = ...

(><) :: Seq a -> Seq a -> Seq a
l >< r = ...

	x <| xs places the element x at the beginning of the sequence xs..

	xs |> x places the element x at the end of the sequence xs.

	l >< r combines the two sequences l and r together.

Create a list from a sequence

import qualified Data.Foldable as Foldable
Foldable.toList :: Seq a -> [a]

There is no toList function in the Sequence module since it can be
easily implemented [https://wiki.haskell.org/Foldable_and_Traversable] with a
fold using Seq’s Foldable [https://wiki.haskell.org/Typeclassopedia#Foldable] instance.

import qualified Data.Foldable as Foldable
Foldable.toList (Seq.fromList ["base", "containers", "QuickCheck"])
> ["base","containers","QuickCheck"]

Pattern Matching

Since 0.5.10

Just like you can pattern match (aka. destructure) a list [a], you can do
the same with sequneces. Let’s first look at how we do this with lists:

case [1, 2, 3] of
 [] -> "empty list"
 (x:xs) -> "first:" ++ show x ++ " rest:" ++ show xs
> "first:1 rest:[2,3]"

Let’s do the same thing with sequences!

-- Imports the patterns to match on.
import Data.Sequence (Seq (Empty, (:<|), (:|>)))

case Seq.fromList [1, 2, 3] of
 Empty -> "empty sequence"
 x :<| xs -> "first:" ++ x ++ " rest:" ++ show xs
> "first:1 rest:fromList [2,3]"

Note

You can’t copy/paste this into GHCi because it’s multiple lines.

You can also take an element off the end:

-- Imports the patterns to match on.
import Data.Sequence (Seq (Empty, (:<|), (:|>)))

case Seq.fromList [1, 2, 3] of
 Empty -> "empty sequence"
 xs :|> x -> "last element:" ++ show x
> "last element:3"

Querying

Check if a sequence is empty

Seq.null :: Seq a -> Bool
Seq.null xs = ...

null [https://hackage.haskell.org/package/containers/docs/Data-Sequence.html#v:null] returns True if the sequence xs is
empty, and False otherwise.

Seq.null Seq.empty
> True

Seq.null (Seq.fromList [1, 2, 3])
> False

The length/size of a sequence

Seq.length :: Seq a -> Int
Seq.length xs = ...

length [https://hackage.haskell.org/package/containers/docs/Data-Sequence.html#v:length] returns the length of the sequence xs.

Seq.length Seq.empty
> 0

Seq.length (Seq.fromList [1, 2, 3])
> 3

The element at a given index

Seq.lookup :: Int -> Seq a -> Maybe a
Seq.lookup n xs = ...

Seq.!? :: Seq a -> Int -> Maybe a
xs !? n = ...

lookup [https://hackage.haskell.org/package/containers/docs/Data-Sequence.html#v:lookup] returns the element at the position n,
or Nothing if the index is out of bounds. !? [https://hackage.haskell.org/package/containers/docs/Data-Sequence.html#v:-33--63-]
is simply a flipped version of lookup.

Note

You may need to import !? qualified if you’re using a Map,
IntMap, or Vector in the same file because they all export the
same operator.

Seq.index :: Seq a -> Int -> a
Seq.index xs n = ...

index [https://hackage.haskell.org/package/containers/docs/Data-Sequence.html#v:index] returns the element at the given
position. It throws a runtime error if the index is out of bounds.

Tip

Use lookup/!? whenever you can and explicitly deal with the
Nothing case.

(Seq.fromList ["base", "containers"]) Seq.!? 0
> Just "base"

Seq.index 0 (Seq.fromList ["base", "containers"])
> "base"

(Seq.fromList ["base", "containers"]) Seq.!? 2
> Nothing

Seq.index (Seq.fromList ["base", "containers"]) 2
> "*** Exception: index out of bounds

When working with functions that return a Maybe v, use a case expression [https://en.wikibooks.org/wiki/Haskell/Control_structures#case_expressions] to
deal with the Just or Nothing value:

do
 let firstDependency = Seq.fromList ["base", "containers"] !? 0
 case firstDependency of
 Nothing -> print "Whoops! No dependencies!"
 Just dep -> print "The first dependency is " ++ dep

Modification

Inserting an element

Seq.insertAt :: Int -> a -> Seq a -> Seq a
Seq.insertAt i x xs = ...

insertAt [https://hackage.haskell.org/package/containers/docs/Data-Sequence.html#v:insertAt] inserts x into xs at the index
i, shifting the rest of the sequence over. If i is out of range then
x will be inserted at the beginning or the end of the sequence as
appropriate.

Seq.insertAt 0 "idris" (Seq.fromList ["haskell", "rust"])
> fromList ["idris","haskell","rust"]

Seq.insertAt (-10) "idris" (Seq.fromList ["haskell", "rust"])
> fromList ["idris","haskell","rust"]

Seq.insertAt 10 "idris" (Seq.fromList ["haskell", "rust"])
> fromList ["haskell","rust","idris"]

See also Adding to an existing sequence.

Delete an element

Seq.deleteAt :: Int -> Seq a -> Seq a
Seq.deleteAt i xs = ...

deleteAt [https://hackage.haskell.org/package/containers/docs/Data-Sequence.html#v:deleteAt] removes the element of the sequence at
index i. If the index is out of bounds then the original sequence is
returned.

Seq.deleteAt 0 (Seq.fromList [0, 1, 2])
> fromList [1,2]

Seq.deleteAt 10 (Seq.fromList [0, 1, 2])
> fromList [0,1,2]

Replace an element

Seq.update :: Int -> a -> Seq a -> Seq a
Seq.update i x xs = ...

update [https://hackage.haskell.org/package/containers/docs/Data-Sequence.html#v:update] replaces the element at position i in
the sequence with x. If the index is out of bounds then the original
sequence is returned.

Seq.update 0 "hello" (Seq.fromList ["hi", "world", "!"])
> fromList ["hello","world","!"]

Seq.update 3 "OUTOFBOUNDS" (Seq.fromList ["hi", "world", "!"])
> fromList ["hi","world","!"]

Adjust/modify an element

Since version 0.5.8

adjust' :: forall a. (a -> a) -> Int -> Seq a -> Seq a
adjust' f i xs = ...

adjust’ [https://hackage.haskell.org/package/containers/docs/Data-Sequence.html#v:adjust-39-] updates the element at position i in
the sequence by applying the function f to the existing element. If the
index is out of bounds then the original sequence is returned.

Seq.adjust' (*10) 0 (Seq.fromList [1, 2, 3])
> fromList [10,2,3]

Seq.adjust' (*10) 3 (Seq.fromList [1, 2, 3])
> fromList [1,2,3]

Note

If you’re using an older version of containers which only has adjust, be
careful because it can lead to poor performance and space leaks (see
adjust [https://hackage.haskell.org/package/containers/docs/Data-Sequence.html#v:adjust] docs).

Modifying all elements

fmap :: (a -> b) -> Seq a -> Seq b
fmap f xs = ...

Seq.mapWithIndex :: (Int -> a -> b) -> Seq a -> Seq b
Seq.mapWithIndex f xs = ...

fmap [https://hackage.haskell.org/package/containers/docs/Data-Sequence.html#v:fmap] transform each element of the sequence with
the function f. fmap is provided by the Functor [https://wiki.haskell.org/Typeclassopedia#Functor] instance for sequences and
can also be written infix using the <$> operator.

mapWithIndex [https://hackage.haskell.org/package/containers/docs/Data-Sequence.html#v:mapWithIndex] allows you to do a similar
transformation but gives you the index that each element is at.

fmap (*10) (Seq.fromList [1, 2, 3])
-- = fromList [1*10, 2*10, 3*10]
> fromList [10,20,30]

(*10) <$> Seq.fromList [1, 2, 3]
-- = fromList [1*10, 2*10, 3*10]
> fromList [10,20,30]

let myMapFunc index val = index * val

Seq.mapWithIndex myMapFunc (Seq.fromList [1, 2, 3])
-- = fromList [0*1, 1*2, 2*3]
> fromList [0,2,6]

Sorting

Seq.sort :: Ord a => Seq a -> Seq a
Seq.sort xs = ...

sort [https://hackage.haskell.org/package/containers/docs/Data-Sequence.html#v:sort] the sequence xs using the Ord
instance.

Seq.sort (Seq.fromList ["x", "a", "c", "b"])
> fromList ["a","b","c","x"]

Subsequences

Take

Seq.take :: Int -> Seq a -> Seq a
Seq.take n xs = ...

take [https://hackage.haskell.org/package/containers/docs/Data-Sequence.html#v:take] returns the first n elements of the
sequence xs. If the length of xs is less than n then all elements
are returned.

Seq.take 0 (Seq.fromList [1, 2, 3])
> fromList []

Seq.take 2 (Seq.fromList [1, 2, 3])
> fromList [1,2]

Seq.take 5 (Seq.fromList [1, 2, 3])
> fromList [1,2,3]

Drop

Seq.drop :: Int -> Seq a -> Seq a
Seq.drop n xs = ...

drop [https://hackage.haskell.org/package/containers/docs/Data-Sequence.html#v:drop] the first n elements of the sequence
xs. If the length of xs is less than n then an empty sequence is
returned.

Seq.drop 0 (Seq.fromList [1, 2, 3])
> fromList [1,2,3]

Seq.drop 2 (Seq.fromList [1, 2, 3])
> fromList [3]

Seq.drop 5 (Seq.fromList [1, 2, 3])
> fromList []

Chunks

Seq.chunksOf :: Int -> Seq a -> Seq (Seq a)
Seq.chunksOf k xs = ...

chunksOf [https://hackage.haskell.org/package/containers/docs/Data-Sequence.html#v:chunksOf] splits the sequence xs into chunks
of size k. If the length of the sequence is not evenly divisible by k
then the last chunk will have less than k elements.

Warning

k can only be 0 when the sequence is empty, otherwise a runtime
error is thrown.

-- A chunk size of 0 can ONLY be given for an empty sequence.
Seq.chunksOf 0 Seq.empty
> fromList []

Seq.chunksOf 1 (Seq.fromList [1, 2, 3])
> fromList [fromList [1],fromList [2],fromList [3]]

Seq.chunksOf 2 (Seq.fromList [1, 2, 3])
> fromList [fromList [1,2],fromList [3]]

Seq.chunksOf 5 (Seq.fromList [1, 2, 3])
> fromList [fromList [1,2,3]]

Folding

foldr :: (a -> b -> b) -> b -> Seq a -> b
foldr f init xs = ...

Seq.foldrWithIndex :: (Int -> a -> b -> b) -> b -> Seq a -> b
Seq.foldrWithIndex f init xs = ...

foldr [https://hackage.haskell.org/package/containers/docs/Data-Sequence.html#v:foldr] collapses the sequence into a summary value
by repeatedly applying f. foldr is provided by the Foldable [https://wiki.haskell.org/Typeclassopedia#Foldable] instance for
sequences. foldWithIndex [https://hackage.haskell.org/package/containers/docs/Data-Sequence.html#v:foldWithIndex] gives you access to the
position in the sequence when transforming each element.

foldr (+) 0 (Seq.fromList [1, 2, 3])
-- = (1 + (2 + (3 + 0)))
> 6

let myFoldFunction index val accum = (index * val) + accum

Seq.foldrWithIndex myFoldFunction 0 (Seq.fromList [1, 2, 3])
-- = ((0*1) + ((1*2) + ((2*3) + 0)))
> 8

Serialization

The best way to serialize and deserialize sequences is to use one of the many
libraries which already support serializing sequences. binary [https://hackage.haskell.org/package/binary],
cereal [https://hackage.haskell.org/package/cereal], and store [https://hackage.haskell.org/package/store] are some common libraries that people
use.

Performance

The API docs are annotated with the Big-O complexities of each of the sequence
operations. For benchmarks see the haskell-perf/sequences [https://github.com/haskell-perf/sequences] page.

Looking for more?

Didn’t find what you’re looking for? This tutorial only covered the most common
sequence functions, for a full list of functions see the
Data.Sequence [https://hackage.haskell.org/package/containers/docs/Data-Sequence.html] API documentation.

Index

 _static/up.png

nav.xhtml

 Table of Contents

 		
 Haskell containers package

 		
 Introduction

 		
 Provided Data Structures

 		
 Related Packages

 		
 Looking for more resources?

 		
 Installing and using the containers package

 		
 Version Requirements

 		
 Importing modules

 		
 In GHCi

 		
 In a Cabal or Stack project

 		
 Sets

 		
 Short Example

 		
 Importing Set and IntSet

 		
 Common API Functions

 		
 Construction and Conversion

 		
 Querying

 		
 Modification

 		
 Set Operations

 		
 Serialization

 		
 Performance

 		
 Looking for more?

 		
 Maps

 		
 Short Example

 		
 Importing Map and IntMap

 		
 Common API Functions

 		
 Construction and Conversion

 		
 Querying

 		
 Modification

 		
 Set-like Operations

 		
 Serialization

 		
 Performance

 		
 Looking for more?

 		
 Sequences

 		
 Short Example

 		
 Importing Sequence

 		
 Common API Functions

 		
 Construction and Conversion

 		
 Pattern Matching

 		
 Querying

 		
 Modification

 		
 Sorting

 		
 Subsequences

 		
 Folding

 		
 Serialization

 		
 Performance

 		
 Looking for more?

_static/down.png

_static/comment.png

_static/down-pressed.png

_static/minus.png

_static/plus.png

_static/file.png

_static/up-pressed.png

_static/comment-bright.png

_static/ajax-loader.gif

_static/comment-close.png

